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Abstract 

The explanations we use to teach the principles of flight more often than not merely 
propagate long-held myths.  A description of flight should focus on the angle of attack and not 
the shape of the wing.  By explaining flight as an application of Newton’s principles, one can 
understand lift, power, wing efficiency and other principles of flight. The Newtonian 
description of lift and an understanding of flight are presented here.  The myths and some 
misconceptions of the application of Bernoulli's equation are also discussed.   
 
I. INTRODUCTION 

There are few physical phenomena, so generally studied, which are as misunderstood 
as the phenomenon of flight.  In general what we have been taught and what we often 
teach as the physical explanation of lift is incorrect.  As you will see, most explanations 
do not even make sense.  We have also studied, often in a fairly superficial way, the 
Bernoulli theorem in a constricting tube, and have gone on to misapply it to unconfined 
airflow.  Because our view has been misguided, there has been little to teach about flight, 
which is a very interesting and important part of our lives.  Here we will show that when 
the physics of lift is understood, flight becomes much more interesting; rich with topics 
to be considered. 

We have all been taught, in one form or another, what we will call the popular 
description of lift. The popular description of lift is really a family of descriptions with 
the unifying factor that they all rely on Bernoulli’s equation and the acceleration of air 
over the wing to explain lift.  Before and shortly after WWII most flight manuals taught 
the Newtonian view of flight, but sometime shortly thereafter the popular description 
dominated.  This latter description of lift of a wing has three major parts.  The first is that 
it fixates on the shape of the wing.  The wing is viewed as being asymmetric with a kind 
of hump on the top.    

The second part of the description is that the air accelerates over the top of the wing 
without any comment on the mechanism that causes the acceleration.  The most common 
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explanation for this acceleration is that, when the air separates at the leading edge of the 
wing, that air going over the top and that going under the wing must rejoin at the trailing 
edge.  Since the air going over the top has to go over the hump, it has farther to travel and 
thus must go faster.  Of course, no one has ever given a physical reason why this 
principle of equal transit times must be obeyed.  In some cases this rule is softened a little 
to just state that since the air must go farther it must go faster. In reality, equal transit 
times holds only for a wing without lift.  The greater the lift the greater the different in 
arrival times at the trailing edge with the air going over the top of the wing arriving 
considerably before the air below the wing.   

The third part of the popular description employs the Bernoulli equation:  
 

 p +
2
1
ρv2 = C, (1) 

 
Here p is the pressure (not well defined at the moment), ρ is the air density, v is the 

speed of the air, and C is a constant.  In aerodynamics the potential energy term (ρgh) is 
neglected because of the small height differences and the small value of density.  The 
argument of the Bernoulli description of lift is that since the air goes faster over the top of 
the wing it has a lower pressure and thus we have lift. At this point one might wonder 
(though it is unlikely) about Newton's first law: a body at rest will remain at rest, and a 
body in motion will continue in straight-line motion unless acted on by an external 
applied force. In the case of a fluid this external force is a pressure difference. To say that 
the decrease in pressure is caused by the acceleration of the air is a clear violation of 
Newton’s first law. 

Another fundamental problem with this description is that the air’s pressure and speed 
are not related by the Bernoulli equation for a real wing in flight! The Bernoulli equation 
is a statement of the conservation of energy. For it to be applied the system must be in 
equilibrium and no energy added to the system. As you will see in the discussion below, a 
great deal of energy as added to the air. Before the wing came by the air was standing 
still. After the passage of the wing there is a great deal of air in motion. A 250-ton jet at 
cruse speed is doing a lot of work to stay in the air. Much of the fuel that is burned is 
adding energy to the air to create lift. Thus the Bernoulli equation is not applicable.  

We said that the popular description of lift fixates on the shape of the wing.  Picture 
in your mind several wings: an asymmetric wing in normal flight, the same wing in 
inverted flight, a symmetric wing and a flat plate. For each one, an orientation into the 
wind can be found which gives zero lift.  We call this orientation the zero effective angle 
of attack.  Now if one were to measure the lift of these wings as a function of the 
effective angle of attack, the results for all of them would be similar to Figure 1 which 
shows the results for two different wing profiles.  The lift is linear with angle, both 
positive and negative, until the wing reaches the critical angle and a stall begins. The 
negative lift for negative angles of attack is the lift that the wing would experience in 
inverted flight.  It is hard to reconcile this information with the popular description of lift.   



 3

 
 

Fig. 1.  Lift as a function of effective angle of attack for two wing profiles. 
 
We should point out that the shape of the wing does affect the stall characteristics and 
efficiency of the wing, but it is not the primary factor in determining its lift. Also, the 
data in the figure are for infinite wings and the response of real, 3-D wings would have to 
be corrected for area and aspect ratio. But the key factor shown here is that the shape of 
the wing has nothing to do with the lift. It all depends on the angle of attack. 

Some of us have worked problems in a physics class calculating the lift of a wing.  
Let us revisit the calculations with real numbers.  Take as an example the lift of the wing 
of a Cessna 172, a common four-seat, high-wing airplane.  It weighs 2300 lb at gross 
weight, has a wing area of 174 ft2, and can fly in slow flight at 65 mph.  The path length 
over the top of the wing is 1.5% greater than the path length under the wing.  A 
calculation assuming that the air’s velocity over the top of the wing is 1.5% greater than 
for the air going under the wing yields a lift of about 2% of that needed for flight.  
Following the same logic, the minimum speed to produce the necessary lift would be 
about 400 mph.  Or working the other way around, the difference in path length would 
have to be about 50% to produce the necessary lift at 65 mph.  This wing would be 
almost as thick as its chord length (distance from leading edge to trailing edge). 

There is another mistaken description of lift, which we will call the wrong-Newtonian 
description of lift, although those that teach it just call it the Newtonian description of lift.  
This description of lift states that diverting air down produces lift, and that lift is a 
reaction force.  This part is true.  Unfortunately, in the wrong-Newtonian description of 
lift the air is diverted down by impact with the bottom of the wing.  It is interesting to 
note that this was the view of lift held by Sir Isaac Newton himself.  Although there is a 
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little of this kind of lift for most wings, it is minimized for efficient wings. The amount of 
air impacted by the bottom of the wing is far too small to account for the lift.   

Yet another common description of lift is that of circulation theory.  Here the air is 
seen to rotate around the wing.  This is sometimes used to explain the acceleration of the 
air over the top to the wing.  There is a great deal of jargon, such as "starting vortex" and 
"bound vortices", associated with this description.   Circulation theory is a mathematical 
abstraction useful and accurate for aerodynamic calculations.  Mathematically, 
circulation is a non-zero curl in the airflow in a closed line integral around a wing, which 
is simply a statement that the wing bends the air.  Circulation theory, like Bernoulli's 
theorem, can be misapplied.  For example, statements have been made that classical 
aerodynamic theory proves that insects cannot fly.  In all examples that we are familiar 
with, the flight of insects is expressed in terms of circulation.  Circulation is a model 
developed for large aircraft that does not apply to small insects.  

What follows is a brief and correct Newtonian description of the lift of a wing.  A 
more detailed discussion can be found in our book “Understanding Flight”.  In brief, the 
lift of a wing is a reaction force and is proportional to the amount and vertical velocity of 
air is diverted from the horizontal to the vertical, with almost all of the air diverted from 
above the wing.   But, before we get to Newton we must discuss viscosity, a key to 
understanding flight. 
 
II. The importance of viscosity 

In understanding the physics of lift, it is important to understand why air bends 
around the top of the wing with enough force to produce lift.  The answer is viscosity.  
The simplest demonstration of the effect of viscosity on a flowing fluid is to touch a 
small stream of water from a faucet with the side of a glass held horizontally.  The water 
wraps part way around the glass.  Newton's first law says that there must be a force on the 
stream of water, in the direction of the glass.  Newton's third law says that there must be 
an equal and opposite force on the glass.  The glass feels a force towards the water, not 
away as one might guess. 

The flow of water around the glass is a demonstration of viscosity.  Because of 
viscosity, the velocity of the fluid is exactly zero at the surface of an object.  (This is why 
one cannot hose dust off of a car.)  A short distance from the surface the fluid has a non-
zero velocity.  The velocity increases with distance from the surface until the free-stream 
velocity is reached.  Think of two adjacent streamlines with different speeds. Since these 
streamlines have different velocities forces between them trying to speed up the slower 
streamline and slow down the faster streamline. The speed of air at the surface of the 
wing is exactly zero with respect to the surface of the wing.  This is an expression of 
viscosity. The speed of the air increases with distance from the wing. Now imagine the 
first non-zero velocity streamline that just grazes the highpoint of the top of the wing. If it 
were initially to go straight back and not follow the wing, there would be a volume of 
zero velocity air between it and the wing. Forces would strip this air away from the wing 
and without a streamline to replace it, the pressure would lower. This lowering of the 
pressure would bend the streamline until it followed the surface of the wing. 

The streamlines are bent by a lowering of the pressure. This is why the air is bent by 
the top of the wing and why the pressure above the wing is lowered. This lowered 
pressure decrease with distance above the wing but is the basis of the lift on a wing. The 
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lowered pressure propagates out at the speed of sound, causing a great deal of air to bend 
around the wing.  

Two streamlines communicate on a molecular scale. This is an expression of the 
pressure and the viscosity of air. Without viscosity there would be no communication 
between streamlines and no boundary layer. Often, calculations of lift are made in the 
limit of zero viscosity. In these cases viscosity is re-introduced implicitly with the Kutta-
Joukowski condition, which requires that the air come smoothly off at the trailing edge of 
the wing. Also, the calculations require that the air follows the surface of the wing which 
is another introduction of the effects of viscosity. One result of the near elimination of 
viscosity from the calculations is that there is no boundary layer calculated. 

We have seen why air bends around the top of the wing.  The question is why this 
thin boundary layer can pull the amount of air necessary to produce lift.  First, one must 
understand that for flight speeds below about Mach 0.3 (30% of the local speed of 
sound), the forces are so small that air is considered an incompressible fluid.  This means 
that the volume does not change and that voids cannot form in the flow.  (This may seem 
like a strange assumption but that assumption is also made in calculation of the flow of 
gas through a venturi using the Bernoulli equation.)  The boundary layer is pulled from 
the horizontal flow of air over the wing pulling down the adjacent streamline and causing 
a lowering of the pressure over the wing.  This propagates outwards causing a great deal 
of air to be accelerated down.  The lowered pressure above the wing draws in the air from 
in front of the wing, produces the upwash (see below) and accelerates it. The acceleration 
of the air over the wing is caused by the lowering of the pressure and not the other way 
around.   

 
III. The Newtonian description of lift 

The derivative form of Newton's second law describes the thrust of a rocket motor or 
of a jet engine: 

 
 vmF &= . (2) 
 

Here m& is the time derivative of the expelled mass and v is the velocity of the gas. Like 
the rocket and the jet, propellers produce thrust and helicopter rotors produce lift by the 
expulsion of air according to Newton's second law.  Propellers and rotors are just rotating 
wings.  It should not be surprising that wings also produce lift by accelerating air in the 
downward direction.  As we will soon see, the wing diverts a great deal of air to produce 
lift. 

Let us now look at the airflow over the wing.  Figure 2 shows the airflow around the 
wing as depicted in many textbooks, flight manuals, and even a NASA website.  This 
figure might be considered a Bernoulli description's view of airflow.  This wing in reality 
has no lift.  The air approaches from the horizontal and leaves in the same direction.  
There has been no net change to the air's direction and therefore no change (lift) to the 
wing. From a Newtonian point of view, the net bending of the air is zero so there is no 
net force acting on it (Newton's first law).  Since there was no net force acting on the air 
there can be no net force acting on the wing (Newton's third law). 
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Fig. 2.  The popular description's view of airflow around a wing. 
 

 
  Figure 3 shows the true airflow around a wing with lift.  The air is drawn up from 

below the wing producing upwash. The air leaves the wing with a downward component, 
called downwash.  Since the air is bent downward, Newton's first law states that there is a 
downward force on that air.  Newton's third law states that there is an equal upward force 
on the wing.  We have lift. 

 

 
Fig. 3.  The true airflow around a wing with lift. 

 
 

Two rest frames  
We are used to looking at the wing in a rest frame where the wing is stationary and 

the air is moving.  This is the perspective in a wind tunnel or of a pilot.  We will call this 
the wing's rest frame.  But, few consider the rest frame where the air is originally 
standing still and the wing is moving.  This we will call the air's rest frame. This is the 
rest frame of a person standing on a mountaintop who is able to take a picture of the 
velocity distribution around a passing wing. That person would see that the air is going 
almost straight down behind the wing.  The fact that the air is accelerated almost straight 
down behind the wing in the air’s rest frame should not be surprising. It has been 
accelerated in the opposite direction of the force of lift satisfying Newton’s third law. 

Figure 4 shows how the two rest frames are related.  The horizontal arrow is the 
speed and direction of the oncoming air in the wing's rest frame.  The other two arrows 
are the downwash as seen in the wing’s and air’s rest frames.  The small vertical arrow, 
labeled vv, is the component of velocity given to the air to produce lift.  In the figure, the 
Greek letter α represents the effective angle of attack of the wing. 
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Fig. 4.  The relationship between the wing and air rest frames. 
 

In the wing's rest frame the wing is seen to bend the airflow down to produce lift.  In 
the air's rest frame the air sees the wing as a receding surface drawing down on the air. 
This is sort of like the action of a receding piston. The air accelerates towards the wing 
and at the last minute the wing gets out of the way. 

One might ask if it makes sense that in the air's rest frame the air goes straight down.  
It certainly makes sense from the point of view of efficiency.  This puts the force parallel 
to gravity.  In fact, the air has a slight forward direction due to frictional forces.  But 
these forces are quite small.  The fictional drag on the wing of a Boeing 747 is the same 
as that of a 0.5-inch cable of the same length. 

One can easily demonstrate that the air comes vertically off the trailing edge of the 
wing.  Examine the air from a small household fan, the blades of which are legitimate 
wings.  The airflow is in a tight column.  If the air were coming off the trailing edge at an 
angle it would form a cone rather than a column.  It is fortunate that airfoils work this 
way. If, in the case of a propeller, the air came off the trailing edge at an angle, the 
transverse component of that air would cost energy but would not contribute to the net 
thrust. 

It is worth noting that the wing produces lift by transferring momentum to the air.  In 
straight-and-level flight this momentum is directed towards the ground.  If the airplane 
were to fly over a large scale the weight of the airplane would be measured.  The earth 
does not get lighter when the airplane takes off.   

We would like to point out that insects obey the same laws of physics as airplanes and 
helicopters.  They produce lift by blowing air down.  When you have a chance, observe a 
bumblebee feeding on flowers.  You will see that when it flies over a leaf, the leaf is 
depressed just as if it had landed on it.   

 
The adjustment of lift 

We are now able to consider how a wing can adjust the lift, L, for varying situations. 
We will rewrite eqn. (2) to read: 

 
 vvmL &= , (3) 
 

where vv is the vertical velocity of the downwash in the air's rest frame.  One can adjust 
the lift by adjusting m& , vv or both.  As we will see, the value of vv changes with distance 
above the wing so it should more accurately be looked at as an average velocity.  Let us 
start with the adjustment of vv. 

Referring to figure 4, one should have little trouble seeing that doubling the speed of 
the airplane, while keeping the angle of attack constant, doubles vv.  Likewise doubling 
the angle of attack of the wing, while keeping the speed of the airplane constant, also 
doubles vv.  Thus is follows that vv is proportional to the wing’s 

• speed 
• angle of attack  

For those that are not familiar with the operation of an airplane, the angle of attack is 
adjusted by tilting the entire aircraft. 
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Now let us look at the adjustment of m& .  We would first like the reader to view the 
wing as a kind of "virtual scoop" as illustrated in figure 5.  The amount of air intercepted 
by the wing is related to the lift distribution along the wing.  The shape of the virtual 
scoop is half of an ellipse with the major axis equal to the wingspan and the minor axis 
proportional to the chord length (distance from leading to trailing edges) of the wing. The 
air intercepted is diverted down with the highest downward velocity near the wing and 
the deflection speed tapering to zero as the distance above the wing increases, as shown 
in the figure. This is not intended to imply that there is a real, physical scoop with clearly 
defined boundaries, and uniform flow. But this visualization aid does allow for a clear 
understanding of how the amount diverted air is affected by speed and density. The 
concept of the virtual scoop does have a real physical basis. In aeronautics the area of this 
scoop can be calculated with the Biot-Savart law, which solves a "fluid potential", similar 
to an electric potential.  

 

 
 

Fig. 5.  The wing as a "virtual scoop" for air. 
 

The amount of air intercepted by the scoop, m& , is proportional to the 
• area of the wing 
• wing’s speed  
• air’s density 

To a good approximation, neither the angle of attack nor the load on the wing affects the 
amount of intercepted air. 

We are now in a position to understand the adjustment of lift.  Let us look at three 
situations.   

Situation 1:  the speed of the airplane has doubled.  If the angle of attack were not 
corrected both m&  and vv would double.  So, to maintain a constant lift, the pilot reduces 
the angle of attack to a value of half of the initial value of vv.  This requires a reduction in 
the angle of attack by a factor of four. 

Situation 2:  the load on the wing has doubled in a 2-g turn, but the speed of the 
airplane remains constant.  The value of m&  has not changed so the wing adjusts for the 
increased load by doubling the angle of attack, doubling vv.   

Situation 3:  the airplane flies at a constant speed but has climbed to an altitude where 
the air density is halved.  Since m&  is now halved the angle of attack must be doubled in 
order to double vv and thus maintain a constant lift. 
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One might ask how large m& is for a typical airplane. Take for example the Cessna 172 
that weighs about 2300 lb (1045 kg).  Traveling at a speed of 140 mph (220 km/h), and 
assuming an effective angle of attack of 5 degrees, we get a vertical velocity for the air of 
about 11.5 mph (18 km/h) right at the wing.  If we assume that the average vertical 
velocity of the air diverted is half that value then we calculate m&  to be on the order of 5 
ton/s.  Thus, a Cessna 172 at cruise is diverting about five times its own weight in air per 
second to produce lift.  A 250-ton jumbo jet in cruise is diverting about its own weight 
per second. 

If for convenience we assume a rectangular scoop for the 36-foot wingspan of the 
Cessna 172, we calculate that the air is diverted from about 18 feet (7.3 m) above the 
wing.  Thus, one can see that the production of lift is not a surface effect as implied by 
the popular description of lift, but extends far above the wing.  This is one of the reasons 
that biplanes are less efficient than monoplanes.  The lower wing is reducing the pressure 
on the bottom of the upper wing making it less effective. Because of this, many biplanes 
have the upper wing (or sometimes the wing’s root) placed forward of the lower wing.   

 
Power and lift 

In aerodynamics, the subject of power requirements is seldom considered.  Some 
introductory textbooks do not even have power listed in the index.  In aeronautics this 
discussion would be about drag, which is a retarding force, the effect of which is 
proportional to the speed of the airplane.  Unfortunately, drag is difficult to derive and is 
usually presented without derivation.   

It is through the understanding of power that flight, as well as drag, can be better 
understood.  We will consider two kinds of power.  Induced power, Pi, is the power 
associated with lift.  Before the wing arrives, the air is standing still.  After the wing's 
passing, the air is headed towards the ground.  Induced power is the rate that kinetic 
energy is given to the air to producing lift. Parasitic power, Pp, is the power lost due to 
the impact of the air with airplane's structure and to frictional losses. 

Although it is difficult to calculate Pi exactly it is easy to state its functional form. 
Since Pi is the rate that kinetic energy is give to the air,  

 
 Pi ∝ m& vv

2. (4) 
 

We can substitute equation (3) into equation (4) to get: 
 

 Pi ∝ Lvv. (5) 
 
A useful function for pilots is the power curve, which is the total power requirement 

for flight as a function of the airplane's speed.  The total power is the sum of Pi and Pp.  
We are now in a position to derive the Pi term of the power curve.  We know that if the 
airplane doubles its speed, m&  is doubled and thus vv is adjusted to half of its original 
value to maintain a constant lift.  Since the lift is constant, equation (5) tells us that Pi is 
halved.  Thus doubling the wing's speed halves Pi.  It follows that  

 

 Pi ∝ 
speed

1 . (6) 
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This is the dotted line in Figure 6. As the airplane flies slower m&  decreases so vv must be 
adjusted by increasing the angle of attack.  Pi dominates at low speed. 

The functional form of Pp is also easy to understand.  The energy given to an air 
molecule on collision with the airplane is 1/2 mv2.  This yields a speed2 term.  The rate of 
collisions with the air is proportional to the speed of the airplane.  Therefore 

 
 Pp ∝ speed3. (7) 
 

The dashed line in Figure 6 represents the functional form of Pp. The total power is the 
solid line in the figure.  The interesting point to be taken from equation (7) is that the top 
speed of an airplane, where Pp dominates, increases as 3

pP .  The engine's power must be 
increased by a factor of eight in order to double the speed.  

Now let us consider what happens when an airplane goes to a higher altitude, where 
the air density has decreased by 25%.  If the speed is kept constant m&  is reduced by 25%  

 
 

Fig. 6.  Power requirement for flight as a function of speed. 
 
and vv must be increased by 33% to maintain a constant lift.  Thus Pi has increased by 
33%.  On the other hand, Pp has been reduced by 25% because of a lower rate of 
collisions with the air.  Since Pp dominates at cruise speeds, it requires less power to fly 
at higher altitudes, but more power at takeoff and landing speeds. 

We know that aircraft manufacturers go to great efforts to make airplanes light.  Now 
we can understand the relationship between Pi and load.  Consider the case where the 
load has been increased by a factor of two in a 2-g turn at a constant speed.  The angle of 
attack must be doubled to double vv since m&  is constant.  Since both L and vv have 
doubled, equation (5) tells us the Pi has increased by a factor of 4.  Thus we have the 
relationship: 

 
 Pi ∝ L2. 
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Thus, lightening the structure of the airplane is rewarded in substantial power savings.  
This is particularly true in takeoffs and climb where Pi dominates. 

Since drag is part of the jargon of flight, we should not completely neglect it in our 
discussion.  Power is drag times speed.  Or the other way around, drag is power/speed.  
So from equation's (6) and (7) we can write the functional form of induced drag, Di, and 
parasitic drag, Dp: 

 

 Di ∝ 2speed
1 ,  

and 
 Dp ∝ speed2. 
 
It should be noted that propellers produce an approximately constant propulsive 

power and jet engines produce a constant thrust.  Thus the maximum speed of a 
propeller-driven airplane is determined by Pp, while Dp determines the maximum speed 
of a jet airplane.  
 
Efficiency 

The efficiency of the production of lift is a fundamental concept that also applies to 
the subject of propulsion.  Consider a wing with a fixed speed and load.  If the area of 
this wing is doubled, m&  is doubled, vv is halved and Pi is likewise halved.  Thus the 
power requirement to produce the lift decreases linearly with the increase of the size of 
the wing.  Lift is proportional to the rate of momentum transfer, and Pi is proportional to 
the rate of kinetic energy transferred.  The larger m&  is for a given lift, or thrust for a 
propulsion system, the smaller the value of Pi.   One can consider Pi as wasted energy.  
Ideally, one would like to produce lift with an almost infinite m&  and an almost zero value 
of vv.  This explains why the propeller cannot produce enough thrust to lift the airplane 
directly, while the wing produces the required lift with a small fraction of the engine’s 
power.  The propeller, being small, must accelerate a small amount of air to a very high 
velocity.  

Fanjet engines, as seen on all the large two-engine jets (i.e. the Boeing 747, 757, etc) 
have a large fan in front of the jet engine.  Only about one part in nine of the air that goes 
into the large intake goes through the combustion chamber.  The rest blows by the outside 
of the turbine engine like the air from a propeller.  Ideally the energy removed from the 
jet's core exhaust, to drive the fan, is sufficient to match the jet’s core exhaust velocity 
with the fan's exhaust velocity.  Thus, the jet engine's core exhaust is only producing 
about 11% of the thrust. This increases the engines efficiency by greatly increasing m&  for 
the same thrust.  There is the additional advantage that these engines are much quieter. 

 
IV. Misapplication of Bernoulli's equation 

Many of the misconception of the physics of flight come from a misunderstanding of 
the application of Bernoulli’s principle.  We feel that we should give at least a brief 
discussion of this topic. 

Most of the misapplication of Bernoulli's equation and general confusion when 
discussing the physics of moving air, outside of the confines of a pipe, are due to the fact 
that most physics textbooks stop about one paragraph too soon.  Earlier we stated that the 
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pressure in equation (1) was not well defined.  In most textbooks it is presented as the 
pressure at a point.  In reality, it is the static pressure, ps, which is measured 
perpendicular to the direction of flow.  The second term (1/2 ρv2) is referred to as the 
dynamic pressure in aeronautics. In unconfined flow, C in equation (1) is not necessarily 
a constant and is referred to as the total pressure, pt.  Thus a more general statement of 
Bernoulli's equation (still neglecting the ρgh term) is: 

 

 t
2

s pv
2
1p =ρ+ . (8) 

 
If energy is added to unconfined air, such as the exhaust from a hair drier or by your 
breath, the dynamic and total pressures of the air increase but not ps.  At the exit from the 
hairdryer or from your lips the stream of air adjusts itself by expanding or contracting to 
have the same value of ps as the surrounding air.   

A good demonstration of this is the static port on the side of an airplane. The static 
port is a small hole on the side of the fuselage used to provide the air pressure for the 
altimeter and other instruments. Although the air passes over the static port at hundreds 
of miles per hour, the correct pressure is still measured.  Only when fast moving, 
unconfined air bends is ps different from the surrounding environment.  The belief that 
just because air is moving faster that the value of ps is lower is wrong in general. The 
exceptions are if the air is confined in a pipe without the addition of energy, or if the 
unconfined air is bending. 

Let us look at a few misapplications of Bernoulli's principle.  The first example we 
will examine is the Bernoulli strip, which is often give as a demonstration of lift of a 
wing.  This is a thin strip of paper, held at one end by both hands.  It first hangs down but 
when one blows along the top, it rises.  This is a demonstration of lift, but certainly not of 
Bernoulli's principle.  The breath does not have lower ps.  Viscosity causes the breath to 
follow the curved surface, Newton's first law says there a force on the air and Newton’s 
third law says there is an equal and opposite force on the paper.  Momentum transfer lifts 
the strip. 

A second example is the confinement of a ping-pong ball in the vertical exhaust from 
a hair dryer.  We are told that this is a demonstration of Bernoulli's principle.  But, we 
now know that the exhaust does not have a lower value of ps.  Again, it is momentum 
transfer that keeps the ball in the airflow.  When the ball gets near the edge of the exhaust 
there is an asymmetric flow around the ball, which pushes it away from the edge of the 
flow.  The same is true when one blows between two ping-pong balls hanging on strings.  
They swing together because of the viscosity and momentum transfer, not Bernoulli’s 
principle.   

The curve of a spinning ball is a little more difficult.  In brief, it is an asymmetric stall 
that causes asymmetric airflow around the ball. The airflow looks very much like that 
around a wing.   

 
V. Conclusion 

We have demonstrated the power of the Newtonian description of lift of a wing.  
The key points are that the lift of the wing is proportional to m& vv and the induced power 
is proportional to Lvv. Also, m& is proportional to the wing's area and speed, and the air 
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density, while vv is proportional to the wing's speed and angle of attack.  With these 
simple tools, most relations in aerodynamics can be understood, and often the functional 
form derived.  It is also easy to understand how a wing adjusts for speed, load, and 
altitude. With the knowledge that efficiency means a large m&  and a small vv, one has an 
additional tool for understanding flight and aircraft propulsion systems. An important 
result, which contradicts what most of us have been taught, is that the shape of the wing 
is of no significance in determining its lift as a function of effective angle of attack. In 
addition, we find that the acceleration of the air over the wing cannot be the cause of lift 
since the acceleration of the air requires a difference in pressure by Newton's second law.  
In other words, the pressure difference drives the acceleration of the air, not the other 
way around.   

Although circulation theory can be used for accurate calculations of lift, it does not 
give a simple, intuitive description of the lift on the wing. We have also shown that the 
pressure and velocity of the air over a real wing in flight at not related by Bernoulli’s 
equation.  Newton's laws hold without exception for both subsonic and supersonic flight, 
and can be used to yield an understanding of many concepts without complicated 
mathematics.  It is our hope that teachers will return to the basics and use Newton's laws 
to describe lift.  Then students can explore flight in much more depth than was possible 
with the popular explanation using Bernoulli. 

 
 


